Introduction:
Let N be a prime (we may assume N >7)
Let
$$X_0(N)$$
 be the (compactified) modular curve for $T_0(N)$.
Let $J_0(N)$ be the Jacobian of $X_0(N)$

•

Then no Elliptic curve over & has a rational point of order N.

- In this lecture we will show ii) can be guaranteed for all quotients A of $J_0(N)$ by showing it for $J_0(N)$.
- Note that $X_{\bullet}(N) \xrightarrow{J} A$ $\int_{a}^{7} (N) \xrightarrow{J} A$ $J_{\bullet}(N) \xrightarrow{J} A$ Banese of $X_{\bullet}(N) = Jacobian of X_{\bullet}(N)$

Stoategy of the Pooof:

1) Relate the reduction of Jo(N) mod N with the Pic of the reduction of the minimal regular model of Xo(N) at N

We shall discuss the precise statement in a while.

2) Get hold of singulazities of $\overline{X}_{0}(N)_{IF_{N}} \rightarrow Basically be a lunch of IP¹'s intersecting transversally.$

As Snowden does it, we shall spend most of our time with 2) taking 1) for granted.

Completely Toxic reduction for Austients:

Lemma: Let R be a Dedekind Domain with Q(R)=K. Let A & B be Abelian varieties over K s.t A >>> B. Then A has a completely toric reduction at a closed point of R => B has 1, 1, 27 1, 1, the closed pt.

A is also a comm. gp. scheme manakes sense & by uniqueness of NMP GIOF= na => Bk is a quotient of Ak

Raynauds Theovern:

Let
$$S = Spec(O)$$
, () a dvo with foaction field K & residue field
R. Suppose \mathcal{K}/\mathcal{Q} a curve ($\Rightarrow rel \cdot dim = 1$). Let X; be the irred.
components of \mathcal{K}_k with $d_i = \mathcal{L}(O_{\mathcal{K}, \mathcal{N}, \chi_i})$.

Thm. (Raynaud) Suppose a) X_K is smooth over K b) X is regular c) gcd of di=1. Let JI be the Nevon model of $Jac(X_K)$ over $U \notin JI$ be the identity component. Then $Pic_{K_S}^{\circ}$ is infact representable by a smooth gp. scheme over $U \notin Coincides with JI.$

<u>Rimk</u>: In our situation Z_k is reduced \Rightarrow dis=1

Minimal vegular mode) of Xo (N):

$$\mathcal{M}_{o}(p, e)$$
 is infact an Affine scheme and we shall denote it by $\mathcal{M}_{o}(p, e)$.

d) We have a presentation of
$$M_o(p)$$
 as a DM stack.
permuting a basis of l-torsion.
 $M(p, l) \longrightarrow M_o(p) = [M(p, l)/G_1]$

with
$$G_1 = G_1L_2$$
 (IFe) \rightarrow automorphism gp. of (split) l-torsion
points on an Elliptic curve over a
field.
 $\Rightarrow M_o(p) = M(p, e) \xrightarrow{G_1 \leftarrow schematic} guotient$
obtained by taking Gimnariants
of the coordinate oring.

- 1 Note that $\# G = (\ell^2 1) (\ell^2 \ell) \neq 0 \pmod{\beta}$ Thus taking invariants behaves well even in charp.
- e) Finally if in all the above statements we replace Elliptic curves with ⁶generalized Elliptic curves' we get models over Z.

$$\underbrace{Fact}: a \mathcal{M}(e) is smooth over $\mathbb{Z}[\underline{L}]$$$

b)
$$M_0(p, l)$$
 is regular and flat over Z[[Moreover
it is smooth over $\mathbb{Z}\left[\frac{1}{pe}\right]$.

<u>AIM</u>: To study the singulaxities in the special fiber of the minimal regular model of Mo(p) by studying those of Mo(p,l)_{IFp}.

Propⁿ: The scheme
$$M_o(p, e)_{IF_p}$$
 is CM & reduced. It is smooth (over IF_p)
away from the S.S. points. Each s.s. point is an ordinary
node.

Pf. Let
$$M_0(p, e) = Spec(A)$$
. A is regular & flat over $Z[I_0]$.
Thus $B = \frac{A}{pA}$ is CM (quotient of a regular ring by a ned)

In the vest of the proof we work over
$$IF_{p}$$
.
(1) We have morphisms $i: M(\ell)_{IF_{p}} \rightarrow M_{0}(p, \ell)_{IF_{p}}$
 $\begin{bmatrix} E, (P, Q) \end{bmatrix} \mapsto \begin{bmatrix} E, \text{ker}(P, Q) \end{bmatrix}$
 $J: M(\ell)_{IF_{p}} \rightarrow M_{0}(p, \ell)_{IF_{p}}$
 $\begin{bmatrix} E, (P, Q) \end{bmatrix} \mapsto \begin{bmatrix} E, \text{Ker}(V), (P, Q) \end{bmatrix}$
 $f: M_{0}(p, \ell)_{IF_{p}} \rightarrow M(\ell)_{IF_{p}}$
 $g: M_{0}(p, \ell)_{IF_{p}} \rightarrow M(\ell)_{IF_{p}}$
 $g: M_{0}(p, \ell)_{IF_{p}} \rightarrow M(\ell)_{IF_{p}}$
 $f = I_{M(\ell)}, f = I_{M(\ell)}$

i) By construction it is immeduate that
$$F_{oi} = J, F_{oj} = i$$

gn particular F^2 preserves $i(\mathcal{M}(e)_{iF_p})$ & their intersection
 $J(\mathcal{M}(e)_{iF_p})$
ii) It also follows that $f_{oj} = F = g_{oi}$

5) Now let
$$z \in \mathcal{M}(\ell)$$
 be a s.s. point. Let $y=i(z)=J(z) \in \mathcal{M}_{o}(p,\ell)$
We have a map $\mathcal{M}(\ell) \perp \mathcal{M}(\ell) \rightarrow \text{smooth curves overs}$
 $\mathbb{F}_{p} \qquad \mathbb{F}_{p} \qquad \mathbb{F}_{p}$
 $\mathbb{F}_{p} \qquad \mathbb{F}_{p} \qquad \mathbb{F}_{p}$
 $\mathcal{M}_{o}(\ell, p) = \overline{\mathcal{F}}_{p} \rightarrow \overline{\mathcal{T}}_{p}$
 $\mathcal{M}_{o}(\ell, p) = \overline{\mathcal{F}}_{p} \rightarrow \overline{\mathcal{T}}_{p}$

Let Ay be the completed local ring at y. 1) $(\chi_{1}, \chi_{2}, \chi_{$

mitex

Similarly if
$$V = g^{*}(t) - f^{*}(t^{p})$$

 $\Rightarrow a(V) = (0, t-t^{p^{2}})$
 $= (0, t(1-t^{p^{2}}))$
Upshot: any element of $C_{x} \times (x \text{ is a power services in a(u) & a(v)})$
if $z \in m_{A,y}$ then $a(z) = F(a(u), a(v))$ for some power Since a is injective. This \Rightarrow $F_{p}IU_{v} \vee I \Rightarrow A_{y}$
Since $a(uv) = 0 \Rightarrow IF_{p}IU_{v} \vee I$
 $IF_{p}IU_{v} \vee I \Rightarrow A_{y}$
Both of these are reduced local rings with two components, so φ is an iso.
Hay s.s. point has a nodal singularity
 I

Now we carry out the proof an integral version of the above proposition.

$$\frac{Prop^{n}}{2} \quad \text{The scheme } M_{o}(p, \ell) \text{ is smooth over } \mathbb{Z}\left[\frac{1}{\ell}\right] \text{ away from} \\ \xrightarrow{\qquad} \text{The s.s points in char } p. \text{ At the s.s points the strictly} \\ \text{complete local ring is } \mathbb{W}(1F_{p})\left[\frac{[u, V]}{(u^{V}-p)}\right] \quad \mathbb{C} \text{ regular.} \\ \xrightarrow{\qquad} \mathbb{W}(u^{V}-p) \quad \mathbb{C} \text{ regular.}$$

Smoothness can be checked fibre wise so the result on
Smoothness follows from last prop^m.
1) Let R> Strictly complete local ring at z a subject in charp.
R> flat /Z[L], dim(R)=2

$$\frac{R}{PR} \approx \frac{1}{PR} \frac{[U,V]}{UV}$$

W(IFp) [U,V] $\longrightarrow R$ Fr
Local rings
 $\frac{1}{V}$ dis surjective since it is so mod P by
Nakayama.
Moreover $UV \in (P) \Rightarrow UV = PLOV \Rightarrow W(IFp) [U,V] \Rightarrow R.$
(completed local ring of a
 $Cherne flat over
W(IFp) is flat
Moreover φ mod P is an iso $\Rightarrow ker(\Phi)$ is p torsion φ hence
 $trivial by flatness.$
3) Now we prove that us has to be an unit. Indeed dim (R)=2
 $\Rightarrow By$ regularity dim $\frac{m}{IFp} \frac{m}{m^2} = 2 \cdot But m = (U,V,P)$$

Ihus
$$\underline{m}_{2}^{2}$$
 Vecto repace spanned by U, V, P mod Puo
If wis not an unit PUTEM? & dim $\underline{m}_{1\overline{p}} \approx 3$ contradicting
regularity.
Upto rescaling R3 WEU, VI
 \overline{w}_{-P})
Structure of MoCP)

• Recall that $M_{p}(p) = M_{0}(P, R)/G_{1}$. So use can use the above Propositions to understand the local ring at s.s points in char. p.

• As observed before reduction mod β commutes with taking quotients by G since $\beta \downarrow |G|$. $\iint_{M_{0}(P)_{IF_{p}}} = M_{0}(\beta, \ell) _{IF_{p}} / G_{1}$.

To understand the local ring of Mo(P) at a sis print we need to understand the invariants under the action of stabilizers on a point above on Mo(p, e).
(see [DR] chap VI Section 6)
Ihm. Let z be a char. p point of Mo(p) & R be the strict complete local ring at z.
a) If z is not ss Mo(p) is smooth at z.

b) if z is S.S &
$$f(z) \neq 0$$
, 1728 $M_0(p)$ is regular at $z \notin R = W [\bar{x}, y] / (\bar{x}y - P)$
c) If z is S.S & $f(z) = 1728$, $R = W [\bar{x}, y] / (\bar{x}y - p^2)$ $\rightarrow not$
d) 11 " 11 11 & $f(z) = 0$, $R = W [\bar{x}, y] / (\bar{x}y - p^2)$ $\rightarrow not$

$$\underline{Rmk}$$
. With further analysis one can show that cuspidal points of $M_o(p)$ are smooth

Minimal regular model of Mo Cp)